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Abstract—Major building blocks of communication networks
such as flow control and congestion control rely on fresh estimates
of the network state to control data traffic injection into the
network. These measured metrics are usually implicitly consid-
ered as estimates of the future network state until updated. In
this paper, we propose to directly and explicitly estimate packet-
based predictive QoS metrics from network measurements. As
many applications possess strict QoS requirements, we focus here
on bounding packet delay quantiles. Our approach is based on
training neural networks to predict the quantile of the delay
distribution observed by future packets given some observations
of packet delays. We validate our approach through recovering
classical closed-form delay quantiles that are obtained from
analytical models of simple queueing systems. We show that our
approach goes beyond these simple models in that it provides
quantile estimates for complex scenarios and under various traffic
patterns including empirical data traffic traces.

I. INTRODUCTION

Flow and congestion control are essential building blocks
for data communication networks. End host often require
robust mechanisms to adapt their packet sending rates to
the available service of communication links to satisfy ap-
plication requirements. For example, distributed applications
such as Cooperative Adaptive Cruise Control (CACC) [1] that
combine trajectory planning and sensory information fusion,
possess not only delay, throughput and loss requirements
but also establish requirements on the spatial fulfillment of
these conditions. Evidently, providing QoS guarantees at dense
intersections or complex traffic situations is fundamentally
different from counterparts in open highway scenarios. Such
distributed applications with strict QoS constrains motivate the
goal of this work, i.e., to predict QoS conditions from network
measurements. In particular, we are interested in predicting
tails of QoS conditions, not averages, due to the strict nature
of the application constraints.

In this paper, we consider the problem of providing timely
QoS metric predictions and provide corresponding preliminary
results. To enable a robust QoS forecasting method, we evalu-
ate in this work the applicability of a machine learning model,
specifically, quantile regression neural networks, see [2], [3].
These are used to achieve reliable estimates for packet delays
in form of forecasting quantiles such as P [delay > x] ≤ ε,
whereas ε is typically small, but depends on the application.
We note that such probabilistic expressions may be used in
future work within flow and congestion control or traffic
engineering and optimization in software defined networks

(SDN). Here, we first evaluate the first building block, namely,
the forecasting of delay quantiles of some measured data
traffic flow. Our evaluation relies on synthetic traffic traces
and latency measurements to benchmark against well-known
performance bounds, additionally, we also apply our pre-
diction approach to real-world traffic estimates provided by
the measurement lab (MLAB) [4]. Besides end-to-end delay
prediction, our approach can be flexibly applied to scenarios in
which traffic and delay measurements are available, which may
comprise software defined networks with integrated probing
nodes and thereby 5G and upcoming 6G mobile networks that
rely on softwaritization of networks and related sophisticated
traffic monitoring solutions. For details on related monitoring
frameworks, we refer to [5], [6].

Our approach is related to adaptation schemes that derive
their transmission rate from system models such as the one
used in TCP BBR and congestion control algorithms for real-
time communication [7], [8], [9]. The approach is also related
but goes beyond methods that use asymptotic models that
describe the steady state of a network link of a path. For
example, analytical models describe the steady state behavior
of certain link or path metrics such as the sojourn and waiting
times. Similar models can be found in [10], [11] to describe
the available bandwidth as an average value. Here, we use
such analytical models to verify that the provided data-driven
approach delivers congruent results, however, we go beyond
such models to obtain tail forecast values that are very hard
to obtain in an analytical fashion.

In this work, we are bridging time-series prediction with the
description of the forecast as a probabilistic bound. Essentially,
we estimate an upper bound for the probability that the
delay of the n + kth packet overshoots a delay quantile
W ε(n+ k) conditioned on prior observed packet delays. The
use of neural networks for the prediction allows for a non-
parametric modeling, which drops assumptions on concrete
packet arrivals, the link services processes as well as on the
error terms in a classical time series model. The model further
allows the evaluation of input features beyond the past packet
delays, e.g., given a prediction of future packet arrival or path
information to improve the prediction.

The outline of the paper is as follows: Section II illustrates
our system model and the approach towards the estimation
of delay quantiles. Section III links the approach to simple
system models for which closed-form analytical results are

This is an author's version of a post-peer-review manuscript accepted for publication in the proceedings of
the 2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and 
Internet Symposium. 



time variable 
network

123 1567

output
observer

input
observer

input output

prediction

4

Fig. 1. System model for delay prediction: packet timestamps are observed
at the input and output of the system to predict the delay quantile for future
arriving packets.

known. Section IV shows and discusses delay predictions for
complex communication systems fed with synthetic as well
as real-world traffic data. Section V reviews the related work.
Sec. VI concludes this paper with a discussion of strengths
and limitations.

II. PROBLEM DESCRIPTION AND APPROACH

We consider the system depicted in Fig. 1, where observers
obtain timestamps at ingress and egress of a end-to-end
network path or segment and hence delays for individually
transmitted packets. The realization of such a system can
be implemented, for example, by smart network interface
cards that provide time-synchronization and high-speed packet
capturing, through in-network telemetry capable switches or,
as we demonstrate in Sec. IV-B, by round trip time (RTT)
measurements. The delay of packet n is described as

W (n) = TD(n)− TA(n) (1)

where TD(n), TA(n) are the departure time and the arrival
time of this packet, respectively. The task of the observers
and the prediction is to take these delay samples and provide
a conditional upper bound on the delay quantile W ε(n + k)
for the n+ kth packet of the form

P [W (n+ k) > W ε(n+ k)|W (n), . . . ,W (1)] ≤ 1− ε (2)

for k ≥ 1. Note that the estimate sought here is pointwise
in the sense that it holds for a predefined future packet with
index k.

In the following, we take an empirical approach towards
the delay quantile estimation problem above. In contrast to
purely analytical approaches as discussed e.g. in [12], we
design a supervised and offline machine learning approach
for the prediction of W ε(n). In detail, we train a neural
network (NN)1 to predict the delay quantile from past delays
and information on arrival traffic. We differentiate two input
feature sets and train a neural network in which only delay
measurements are known and a second network in which
future arrivals times are known in addition. We expect that
knowing or estimating the future arrivals to the network helps
improving the delay quantile prediction.

1The code is available at https://gitlab.com/ralfluebben/tailing

TABLE I
INPUT FEATURES

Parameter Values
delays of pkt# [[300 : 400), [399 : 400)]

interarrival time of pkt# [{∅}, [400 : 600)]

TABLE II
HYPERPARAMETERS USED FOR TRAINING OF THE DNN

Parameter Value/Setting
number of layers [1, 2, 3]

neurons per layer 1 [10, 20, 30, 40, 100, 200]
neurons per layer 2 [0, 10, 20, 30, 40, 100]
neurons per layer 3 [0, 10, 20, 30, 40]

learning rate [adaptive, 0.01, 0.001, 0.0001]
l2 regularization [0.01, 0.001]

drop out [0.0, 0.5]
optimizer adam

epochs 600 with early stopping
batch size 2048

To estimate the packet delay quantiles, we train a quantile
regression neuronal network using the pinball loss function

L(y, ŷ) =

{
(1− ε)(ŷ − y) if y < ŷ

ε(y − ŷ) if y ≥ ŷ
(3)

We minimize the expectation of this loss function with re-
spect to the unknown delay distribution that provides the ε-
quantile [13], [2], [3]. By the use of this loss function, the
neural network learns to predict the ε-quantile of the delay. We
perform a hyperparameter optimization using the parameters
listed in Tab. II for a deep feed forward neural network (DNN)
architecture and parameters given in Tab. III for a long short
term memory (LSTM) neural network. The selection of the
hyperparameters is based on the Hyperband search [14]. Since
the search algorithm selects hyperparameters based on the
progress of the optimization criteria on a small number of
epochs, we perform the optimization for each learning rate
individually. The rationale here is that a small learning rate
may have a slower progress than a high learning rate but may
still perform better for a high number of epochs. To benchmark
the predictions of the trained NN, we use, in addition to
the pinball loss function that leads to the prediction of the
statistical upper bound, two further metrics. Firstly, the mean
absolute error, in the following denoted as distance, which
returns the absolute distance (difference) between the predicted
bound and the measured delay values as we seek a tight bound,
i.e., a small mean absolute error. Secondly, we compare the
predicted quantile to empirical quantiles, i.e., the empirical
quantile is extracted packet-wise for each packet number from
all available sample paths of delay traces.

III. COMPARISON WITH ANALYTICAL RESULTS

In the following, we empirically show that the estimates of
the quantile estimation approach from the previous section co-
incide with analytical results obtained for tractable examples.



TABLE III
HYPERPARAMETERS USED FOR TRAINING OF THE LSTM NN

Parameter Value/Setting
number of cells [10, 20, 30, 40, 100, 200]

learning rate [adaptive, 0.01, 0.001, 0.0001]
drop out [0.0, 0.5]
optimizer adam

epochs 200 with early stopping
batch size 2048

A. M/M/1 System

We start with an example of a well understood queueing
system, the M/M/1 system, with one server having expo-
nentially distributed service times with parameter µ, as well
as, exponentially distributed inter-packet arrival times with
parameter λ. It is known that an M/M/1 queueing system has
a steady-state response time distribution of

P [W > aW ] = e−a (4)

with expected response time W = 1
1−ρ

1
µ and the shorthand

notation ρ := λ/µ for a ≥ 0. Now, fixing the violation
probability e−a = 1 − ϵ, our approach estimates the corre-
sponding delay quantile aW , which we denoted above as W ϵ.
For 1− ϵ = 0.95, the related response time quantile is 0.599.

To validate the empirical quantile estimation approach we
use training data generated from simulations and compare
the quantile estimate W ϵ(n) of packet n to the analytical
delay quantile aW . We obtain simulation data using the
discrete event simulator Omnet++ where we simulate an
M/M/1 queueing system and record arrival and departure times
TA(n), TD(n) to compute packet delays.

We simulate 3 · 105 packet traces for different utilizations.
We split the data into a training, validation, and test set. The
training set comprises 80%, the validation set 10%, and the
test set 10% of the traces. We use the delay of packets in
the range [n − r, n), where r ≥ 1 specifies the length of the
input feature sequence, to predict future delay quantiles for the
packets in the range [n, n+f) for f > 0. Note that the quantile
prediction provided in Sec. II is point-wise, i.e., we obtain one
prediction for a certain packet index. Hence, the comparison
with the analytical steady state quantile aW from (4) is strictly
only meaningful for packets far enough in future such that
they can be considered in steady state. We select n = 400 to
assume steady state delays, f = 200 for a sufficiently large
prediction interval, and r = 1 and r = 100, respectively.

For our estimation approach, we use the input features
shown in Tab. I, i.e., solely the packet delays and in compari-
son the combination of the packet delays and known future
packet arrival time points. Tab. V in the appendix shows
the optimal hyperparameters, related quantiles, and distance
metrics of the validation and test sets.

Fig. 2 compares the empirical packet-wise quantiles W ϵ to
the mean predicted quantile for the test data set. Recall that
the analytical value for this example accounts to aW = 0.599.
The prediction series converges to the analytical and empirical
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Fig. 2. M/M/1 system: Empirical delay quantile vs. mean predicted quantile
for delay input sample of packet # 399.

quantile quickly. We only show results for the deep neural
network architecture here since the LSTM network shows a
very similar performance.

Overall, we find that the training creates neural networks
that are able to predict packet delays for that the quantile
condition Eq. (2) holds. We also note that the prediction
improves if knowledge or estimates of future arrivals, i.e., the
next packet interarrival times, are included for the prediction
(not shown here). The delay quantile is still correctly predicted
according to the given ε, but the distance decreases, i.e., the
prediction returns a tighter bound. The improvement using
this additional information is relevant for applications which
influence future packet arrivals, e.g., through selecting videos
qualities to be transmitted, selecting sensor status sending
times, or encoder settings in video streaming scenarios.

IV. DELAY PREDICTIONS: QUEUEING SYSTEMS AND
EMPIRICAL TRACES

Next, we evaluate the delay quantile prediction approach
described before on different systems, starting with synthetic
queueing systems to empirical network data traces.

A. Synthetic queueing systems

First, we show the predictions of packet delays for queueing
systems with service and interarrival times drawn from a
Weibull distribution (denoted as W ), i.e., we perform experi-
ment for a M/W/1 system and a W/W/1 system. The Weibull
distribution leads to a slower than exponential tail of the
service or interarrival times leading to an intuitive increase
of the delay quantiles. The optimal parameters for the neural
networks after training are given in Tab. VI and Tab. VII in
the appendix for the M/W/1 and W/W/1 system, respectively.
Again, only results for the DNN architecture are shown since
the LSTM architecture performs similarly. We observe that for
all variants of the input features, the training generates neural
networks that provide an empirically valid prediction. Again,
the inclusion of information of the arrivals leads to tighter
bounds.

Fig. 3 shows a strong congruence of the mean of the
predicted delay quantiles and the empirical quantiles for a
W/W/1 queueing system. In comparison to the light tailed
service and interarrival times in the example in Fig. 2, we
observe that the predicted quantiles here converge slower
to their empirical steady state counterparts. Note that, the
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Fig. 3. W/W/1 system: Empirical delay quantile vs. mean predicted quantile.
Input features are the delay samples for packets # [399 : 400). Model
parameters: Scale σ and shape k as σ = 1.5, k = 0.6647 (interarrival times)
and σ = 0.0375, k = 0.6647 (service times). The utilization is ϱ = 0.75
and the violation probability for the quantile estimates is ε = 0.05.

distance values given in Tab. V to Tab. VII allow only for
a comparison between results related to one specific queueing
system, i.e., to compare the tightness of the predicted bound of
that specific system. Since different queueing systems such as
M/M/1 and W/W/1 exhibit a different burstiness and thereby
different upper bounds for the same value of ε the distance
metric is not comparable between different systems.

Next, we extend the prediction to systems where the packet
arrivals are not independently and identically distributed (iid.)
but come from an ON-OFF Markov source where in the ON
state (state 1) the source produces packets at a constant rate
P and in the OFF state (state 2) the packet arrivals stop. The
packet arrival stream is characterized through three parameters,
i.e., the probability to change states Pij , i.e., moving from
state i to state j and the mean time T to change states
twice [12]. The latter metric is usually considered as proxy
for the burstiness of the flow.

We train the neural networks and optimize the hyperparam-
eters from Tab. II and Tab. III, except for the learning rate
which we fix to the adaptive rate. We configure the packet
arrival stream such that the packet rate in the ON state is
20 packets per second and the probability to be in the ON
state pON = p21

p12+p21
= 0.75. The mean time to change states

twice is set to 5 seconds. The service time increments are
exponentially distributed with mean of 0.05 seconds. As input
feature sequence, we select r = 100 and r = 1, i.e. the delay
sample ranges are from packets [300 : 400) and [399 : 400) for
comparison. For both input features we obtain valid quantiles
of 0.051 and corresponding test performance of 0.05 and
0.055, respectively. We omit the hyperparameters here, and
again the DNN and LSTM network perform similarly good.
Fig. 4 shows examples of sampled delay traces in comparison
to the predicted bound. Note that we previously presented in
Fig. 2 and Fig. 3 the empirical delay quantile of the traces
in comparison to the predicted bound, here we present the
sampled delays. The samples in theses sub-figures differ in
their burst durations. The neural network predicts delay series
that incorporate these different burst period length, i.e., the
rising curve for a larger burstiness lasts longer in Fig. 4b.

In the previous experiments, we predicted the quantiles for
networks with iid. samples or memoryless queueing systems.
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(a) Burstiness T=50

400 425 450 475 500 525 550 575 600
packet [#]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
la

y 
[s

] inputs
label
predicted quantile

(b) Burstiness T=100

Fig. 4. Delay quantile predictions for a exemplary trace of Markov ON-OFF
packet arrivals with burstiness T : The quantile estimator learns the burstiness
property. The rising curve for a larger burstiness lasts longer.

Intuitively, a neural network cannot improve its prediction
from longer input sequences, since no additional information is
contained in longer input sequences. Additional experiments,
not shown in this work, with more complex, non-iid., or non-
memoryless traffic and service patterns show an improvement
using a LSTM neural network architecture and longer input
trains.

B. Trace-based Evaluation

The experiments in the previous sections use synthetic
stationary data traces. In contrast, empirical data traces do not
show classical statistical properties regarding distribution and
load. Hence, we consider next a data set containing empirical
traces from the MLAB. Instead of one-way delays, we use
round trip time measurements as training input since clock
synchronization cannot be guaranteed in these empirical data
sets.

We extract 2·105 RTT samples from MLAB pcap-files from
Nov. 2020 from one MLab measurement server in Hamburg,
Germany. To obtain non-client specific predictions we train
a delay quantile prediction neural network based on measure-
ments from all clients connected to this server. We train a DNN
and LSTM network as explained above to predict the RTT.
Tab. IV presents the results after hyperparameter optimization.
Both architectures (DNN and LSTM) provide predictions that
fulfill the quantile definition. We note that using longer input
trains tightens the prediction. Fig. 5 shows delay quantile
predictions for exemplary traces using the LSTM model for
round-trip time delays obtained from the MLAB traces.

V. RELATED WORK

Forecasting the traffic behavior in computer networks using
machine learning is successfully applied in various works for



TABLE IV
MLAB DATA

input features hyperparameters distance quantile
delay interarrivals arch units 1 units 2 units 3 dropout lear. rate l2 reg validation test validation test

[399 : 400) ∅ Dense 200 0 0 0.0 adaptive 0.001 0.227 0.23 0.05 0.049
[300 : 400) ∅ Dense 200 0 0 0.0 adaptive 0.001 0.219 0.22 0.052 0.053
[0 : 400) ∅ Dense 30 40 0 0.0 adaptive 0.001 0.218 0.218 0.054 0.055

[399 : 400) ∅ LSTM 200 0 0 0.0 adaptive 0.001 0.225 0.228 0.052 0.05
[300 : 400) ∅ LSTM 70 0 0 0.0 adaptive 0.001 0.219 0.219 0.05 0.049
[0 : 400) ∅ LSTM 70 0 0 0.0 adaptive 0.001 0.219 0.219 0.051 0.052
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Fig. 5. Delay quantile predictions using the LSTM model for round-trip time
delays obtained from MLAB traces.

which we refer to the surveys [15], [16]. Here, we bring into
focus approaches that target forecasting the QoS parameters
on end-hosts related to our end-to-end prediction of delay
quantiles and examples in which the prediction of delays is
applied in non end-to-end use cases.

Often, forecasting or estimation are applied to throughput
prediction or related to adaptive bitrate (ABR) algorithms
in streaming applications to select variations of chunks in
a video stream of different quality and thereby size, i.e.
low quality chunks require less throughput. Typically, the
optimization goal is to transmit the highest quality chunk
so that it arrives before the content is played out to avoid
audio or video stalls. In [17], an ABR algorithm for video
streaming is proposed using reinforcement learning which
was based among other parameters on download times and
measured network throughput. Also in [18] a reinforcement
learning approach is applied to ABR to optimize the quality
of experience. In [19], a neural network is used to predict the
transmission time, which is used to select a suitable chunk
in an ABR algorithm. These works go essentially back to [7]
in which different throughput predictors are proposed that are
not based on machine learning.

A bandwidth prediction approach that outputs quantiles
of the expected bandwidth at geolocations in automotive
scenarios using physical layer, data link layer, speed, traffic,
and weather information is described in [20]. Similarly, passive
probing parameters from lower network layers are used in [21]
to predict the mean end-to-end latency in automotive scenarios.

An online throughput prediction for ABR selection in
cellular networks is illustrated in [22] that further includes a
prediction of the user’s environment such as public transport,
indoor, and open air environments, since characteristics of
cellular networks differ strongly in these environments.

The application and advantage of machine learning to the
field of available bandwidth estimation is shown in [23], [24],
[25]. Further applications may be to estimate the link service
as it can be inferred from delay measurements, see e.g. [26],
[27].

Often a forecast is directly integrated into transport layer
protocols, typically, for congestion control. In [9], the sender
predicts a sending rate, so that packets arrive with a delay be-
low a certain value with high probability. Also the congestion
control designed in [28] uses machine learning to optimize
the sending rate under delay constraints. In [29] congestion
control algorithms are designed automatically by training.

For prediction and optimization, machine learning is applied
to SDNs, the survey [30] classifies and summarizes various
approaches. Here, we highlight approaches that focus on the
delay prediction. The authors in [31] envision the prediction of
delays for the optimization of SDNs topology and show that
delay can be predicted with a small error, especially the mean
end-to-end delay is predicted for various scenarios including
variations in topology, network size, traffic distribution, traf-
fic intensity, and routing configurations. Also in [32], [33],
[34] neural networks, specifically, graph neural networks, are
trained to predict performance indicators such as throughput,
delay, and jitter for network topologies with input parameters
such as traffic, topology, and routing configuration.

Closely related to our work is [35] in which QoS distri-
butions for, e.g., the delay are predicted from traffic samples
by a conditional variational autoencoder neural network. We
also envision a stochastic description of the delay, but instead
of using the distribution as input feature during the training,
we rely on quantile regression to directly return a stochastic
estimate of the delay.

The reviewed related work shows the advantages of the
application of machine learning to the estimation of end-to-



end QoS parameters. Often, the approaches comprise through-
put estimation in conjunction with ABR algorithms or with
congestion control protocols for end-to-end approaches. Delay
prediction is among other performance parameters used for op-
timization in SDNs. Complementary, we present the prediction
of delay quantiles for end-to-end traffic flows using quantile
regression.

VI. CONCLUSION AND DISCUSSION

This work uses quantile regression neural networks to
reliably estimate quantiles of packet sojourn times in com-
munication systems. In general, the empirical results show
that a neural network is able to provide valid delay quantile
estimates. First, we show that neural networks recover classical
results from queueing theory on delay quantiles. Further, we
show that they are also able to provide results in more com-
plex scenarios with varying load, mixed arrival, and service
processes. This underpins the applicability of the presented
approach to computer networks, which typically feature more
complex structures with unknown arrival and service process
parameters. We finally show an application of these estimates
in the context of real-world data traces obtained from MLAB.

Limitations of this work include that the quantile predic-
tions are point-wise and not sample path predictions. Future
work comprises the illumination of the relationships between
structures of the queueing elements in the network to provide
more complex forecasting for traffic optimization.
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APPENDIX

Tab. V, Tab. VI, and Tab. VII display the selected parameters
after hyperparameter tuning and the distance as well as the
empirical quantile for the queueing systems M/M/1, M/W/1,
and W/W/1. For each system four experiments were conducted
with a short and long delay sequence as well as inter-arrivals of
upcoming packets. For all systems a valid quantile is predicted.
Note that information on upcoming packet arrivals improve the
prediction. The experiments were conducted with a DNN and
LSTM architecture, which perform similarly, where we only
show the results of the DNN architecture.
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